
The Diet Problem

A classic linear programming problem is the diet problem. The basis of this
problem is to make sure that a person gets all of the nutrients they require at a
minimum of cost. However, there are often other factors to take into consider-
ation. Most obviously, each food has costs a different amount and has different
amounts of nutrients. Additionally, ingesting too much of certain nutrients can
lead to complications—you need a minimum amount of calories but you dont
want to consume too many, for example. Similarly, people can only eat a spe-
cific volume of food. Fortunately, all of these constraints are easy to work with
in Coopr as this example will show.

Build the model

We begin our Coopr model with

from coopr.pyomo import *

to import the Coopr package for use in the code. The next step is to create an
object of the model class, which by convention we call model. We implement
this by writing

model = Model()

The rest of our work will be contained within this object.
In the diet problem, there are two main sets that we are looking at: the set

of foods and the set of nutrients, which we define as

model.foods = Set()
model.nutrients = Set()

Both of these sets could be very large (arguably, the set of all foods is
unbounded); however, for implementing the model in Coopr, this is irrelevant.
It is in the data file that the information for these sets is filled in.

The solution to the diet problem involves minimizing the amount of money
we are spending on food. Obviously, to do this we must know the cost of each
kind of food. To do this, we create a one dimensional parameter that measures
the cost associated with each food:

model.costs = Param(model.foods)

This says that for each food, there is a cost associated with it, which will be
implemented later when we construct the data file.

Similarly, each nutrient has a minimum and maximum requirement (note
that for some nutrients the maximum is arbitrarily large). We can emulate the
code for cost to create two one dimensional variables, each over nutrients.

model.min_nutrient=Param(model.nutrients)
model.max_nutrient=Param(model.nutrients)

1

For this model, we also want to consider how much food a person can rea-
sonably consume—the solution is useless if no person can eat that much. Thus,
we add a volume parameter over the set of foods. This is done similarly to the
previous examples.

model.volumes=Param(model.foods)

We also need a parameter for the max volume of food that can be consumed.
We do this like the previous examples but without a set that the parameter is
over. This is because the max volume of food consumed is independent of either
food or nutrients. We input

model.max_volume=Param()

There’s one last parameter that must be taken into consideration: how much
of each nutrient each food contains. Unlike the previous examples, this parame-
ter is in two dimensions—it is over both the set of foods and the set of nutrients.
This just requires a small change in the code.

model.nutrient_value=Param(model.nutrients, model.foods)

The comma indicates that this parameter is over two different sets, and thus
is in two dimensions. When we create the data file, we will be able to fill in how
much of each nutrient each food contains.

At this point we have defined our sets and parameters. However, we have
yet to cosnider the amount of food to be bought and eaten. This is the variable
were trying to solve for, and thus we create an object of the variable class. Since
this is just recording how much food to purchase, we create a one dimensional
variable over food:

model.amount=Var(model.foods, within = NonNegativeReals)

We restrict our domain to the non-negative reals. If we accepted negative
numbers than the model could tell us to buy negative amounts of food, which is
an unrealistic—and thus useless—model. We could further restrict the domain
to the integers to make it more realistic, but that would make the problem much
harder for little gain: if this model is used on a large scale than the difference
between the integer solution and the non-integer solution is often irrelevant.

At this point we must start defining the rules associated with our paramaters
and variables. We begin with the most important rule, the cost rule, which will
tell the model to try and minimize the overall cost. Logically, the total cost is
going to be the sum of how much is spent on each food, and that value in turn is
going to be determined by the cost of the food and how much of it is purchased.
For example, if three $5 hamburgers and two $1 apples are purchased, than the
total cost would be 3 ·5+2 ·1 = 17. Note that this process is the same as taking
the dot product of the amounts vector and the costs vector.

To input this, we must define the cost rule, which we creatively call costRule
as

2

def costRule(model):
return sum(model.costs[n]*model.amount[n] for n in model.foods)

which will go through and multiply the costs and amounts of each food together
and then take their sum as outlined above. We must include another line,
though:

model.cost=Objective(rule=costRule)

This line defines the objective of the model as the costRule, which Coopr
interprets as the value it needs to minimize; in this case it will minimize our
costs. Also, as a note, we defined the objective as “model.cost” which is not
to be confused with the parameter we defined earlier as “model.costs,” despite
their similar names. These are two different values and accidentally giving them
the same name will cause problems when trying to solve the problem.

We must also create a rule for the volume consumed. The construction of
this rule is similar to the cost rule as once again we take the dot product, this
time between the volume and amount vectors.

def volumeRule(model):
return sum(model.volumes[n]*model.amount[n] for n in

model.foods) <= model.max_volume

model.volume = Constraint(rule=volumeRule)

Note that here we have a constraint instead of an objective. This requires
that the rule returns true, but otherwsie the value is irrelevant. While objective
looks for the least value, constraints just require that a value works.

Finally, we need to add the constraint that ensures we obtain proper amounts
of each nutrient. This one is a bit more complicated for two reasons: the value
needs to be within a range, rather than just greater than or less than another
value, and nutrient value was a two dimensional variable. It’s easy to fix the
first problem in a myriad of ways; the way we will do it involves defining another
variable and checking if that is in the proper range. To solve the second problem,
we give the rule an index in addition to the model as an input. The code will
be

def nutrientRule(n, model):
value = sum(model.nutrient_value[n,f]*model.amount[f]

for f in model.foods)
return (model.min_nutrient[n], value, model.max_nutrient[n])

model.nutrientConstraint = Constraint(model.nutrients, rule=nutrientRule)

The rule itself will act much like the previous rules, but by adding an index
into the constraint we will cycle through each of the nutrients. Essentially, what
we have done is compressed many “nutrient rules,” each of which acts the same,
into one rule that will look at each nutrient individually.

3

At this point, we have finished creating the model file. We have defined our
sets, paramaters and variables. We also defined the objective of the model and
constraints that must be accepted for a solution. Make sure to save this as a
.py file. Now, all that’s left now is to build a data file.

Data entry

Much like with the model, we begin wtih the two main sets we’re looking at:
foods and nutrients. For brevety, we’ll only look at three foods and three nutri-
ents. Note that “vc” is just shorthand for vitamin c.

set foods := steak apple rice;
set nutrients := calories protein vc;

To define the set just put set [name] := [elements of set]; where the elements
of the set are seperated by a single space.

We now define a paramater without an associated set. In this case, it is the
paramater “max volume”. To do this, simply input

param: max_volume := 400;

It is worth pointing out that for this example the volumes are all fairly arbitrary.
The parameters representing the costs, volumes, nutrient minimums and

nutrient maximums can all be input in compareable fashions with the main
difference being which set the paramater is over. In the code, the first line defins
what parameter is being looked at and each subsequent line gives a member of
the appropriate set and a value associated with it.

param: costs :=
steak 10
apple 2
rice 1;

param: volumes :=
steak 1
apple 1
rice 1;

param: min_nutrient :=
calories 2000
protein 56
vc 300;

param: max_nutrient :=
calories 4000
protein 168
vc 2000;

4

For the most part, these numbers are arbitrary and should not be used for
any real life diet. One note is that the reason all of the volumes are the same
is because we are standardizing all of the prices (and soon nutrients) per 1 unit
of volume. In a different example, such as comparing foods at a restaurant, the
volumes would be different among the foods, but in this case they’re the same.

Finally, we create the data for our parameter nutreint value, which was over
both food and nutrients. Once again, we include “param” followed by the name
of the parameter on the first line (though note that there is no colon after param
in this case, while there was previously). The next line is the elements of the
food set followed by := and the first column is the elements of the nutrient set.
We then fill in the resulting matrix.

param nutrient_value:
steak apple rice :=

calories 180 65 143
protein 40 1 5
vc 0 30 0;

The amount of spaces between each element is irrelevent (as long as there is
at least one) so the matrix should be formatted for ease of reading.

Now that we have finished both the model and the data file save them both.
It’s convention to give the model file a .py extension and the data file a .dat
extension.

Solution

Using Coopr we quickly find the solution to our diet problem. Simply run
Pyomo with the inputs being the .py file and the .dat file. For example, if using
a Linux machine go to the command line and change into the directory where
the files are saved. Then, simply type “pyomo [filename].py [filename].dat”. In
this case, I used “dietProblem” for my file name. If successful, the following
output will appear:

==
= Solver Results =
==

--
Problem Information
--
Problem:
- Lower bound: 29.44055944
Upper bound: inf
Number of objectives: 1
Number of constraints: 8
Number of variables: 4
Number of nonzeros: 18

5

Sense: minimize

--
Solver Information
--
Solver:
- Status: ok
Termination condition: unknown
Error rc: 0

--
Solution Information
--
Solution:
- number of solutions: 1
number of solutions displayed: 1

- Gap: 0.0
Status: optimal
Objective:
f:
Id: 0
Value: 29.44055944

Variable:
amount[rice]:
Id: 0
Value: 9.44056

amount[apple]:
Id: 2
Value: 10

The most important part is the solution information. Under the objective
header is the “value” which tells us the total amount we’ll be spending. In this
case, it’s $29.44. Below that, under variable, we see that we will be purchasing
9.44056 units of volume of rice and 10 apples. Thus, we have all of the pertinent
information for our solution.

Of course, further refinements could be made, such as requiring at least one
of each kind of food, a maximum amount purchased of one food, a “happiness”
factor that takes into account how much you enjoy each food, or just including
more foods and nutrients. However, this is left as an exercise for the reader—
with this outline it should be simple to refine the model for more complicated
scenarios.

6

